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The results of theoretical and experimental investigations of magnetohydrodynamic flow 
around bodies in uniform external fields are well known. Problems involving magnetohydrodynam- 
ic flow around finite-dimension solids in electromagnetic fields produced by sources located 
inside or at the surface of the solid have been investigated to a much lesser extent. Such 
sources make it possible to control to a large extent the distribution of electromagnetic 
volumetric forces (EVF) in the liquid and modify both the hydrodynamic flow pattern and the 
hydrodynamic resistance, which is evident from the numerical investigations [1-3] performed 
for medium Reynolds numbers. The present paper is concerned with an analytical investigation 
of secondary flows that arise in the flow around a finite-width flat plate with an internal 
source [4] for large Reynolds number and small values of the magnetohydrodynamic interaction 
parameter N. The exact solution has been obtained for the first term of an expansion of the 
three-dimensional flow field under consideration with respect to the N parameter. The obtained 
solution is used for investigating the qualitative characteristics of the wake stream formed 
behind the plate and the conditions under which the secondary flow is close to a two-dimension- 
al flow. 

i. For the sake of convenience in presentation, we shall briefly recall the basic ele- 
ments of the system under consideration [4], which consists of a zero-thickness plate of infi- 
nite length along the y coordinate, whose width is equal to a along the x axis. The plate is 
immersed in the flow of an incompressible, conducting liquid having the velocity uoe x at in- 
finity upstream along the flow. The internal, conduction-type source consists of a magnetic 
system in the form of a set of periodic current cells (surface cells, located in the plane of 
the olate), 

~ d~ ] ~ko~ /io(@ ~r I xi<~t/2,  
(tA) i ( x , y ) = J  o i (x )e~+ k--~-~e~je ; i ( x ) = /  0 ~r l x [ > t / 2  (1.1) 

(I ~o ( x ) I ~  = t)  

and ideally sectional electrodes with a potential depending periodically on y (~elk~ It is 
evident from (i.i) that the magnetic system is assigned by a single dimensionless function 
io(x), which is assumed to be real, and by the dimensionless wave number ko (it is rendered 
dimensionless by using a as the length scale). The form of the function lo" ~x.r ) and the value 
of ko determine the character of the current cells (shown schematically in Fig. 2 in [4]) that 
constitute the magnetic system of the source, so that they depend to a large extent on the pur- 
pose of the magnetohydrodynamic device. If, for instance, the device is to be used for accel- 
erating the oncoming flow or transforming the energy of the oncoming flow into electric energy, 
its magnetic system must consist of current cells extended along the x axis (i.e., along the 
flow); the currents will then basically be longitudinal, while the transverse, closing currents 
must be located only near the plate edges within a strip of definite width. A magnetic system 
of this type corresponds to the function io(x) which is equal to unity over a larger part of 
the interval Ixl ~ 0.5, decreasing to zero at the ends of this interval. 

The secondary flows produced by electromagnetic forces are investigated specifically for 
the function 

= - ( 1 . 2 )  
( ~ _  -o:~o)~  

. 

which, for ko >> i, provides a magnetic system for flow acceleration that is close to the op- 
timum one, as was demonstrated in [4]. 
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2. The vortex flow around the plate caused by electromagnetic forces is investigated 
here for the most interesting case of large Reynolds numbers. In this case, significant per- 
turbation of the velocity field of the oncoming uniform flow occurs near the plate at a dis- 
tance from it not exceeding I = (2~/ko)a (along the normal). Assuming that the boundary layer 
thickness is small and that the force field and the region of perturbations of the velocity 
field are located far beyond the boundaries of the viscous boundary layer, we can investigate 
the velocity field outside this layer without considering the effect of viscosity. The dimen- 
sionless velocity field here satisfies the equations of hydrodynamics, 

with the force field 

(V.V)V = - - V p  -}- N f ,  d iv  V = 0 (2.1) 

f = [ E •  + H(V.H) - -  VH~ ( 2 . 2 )  

the condition of absence of perturbations at infinity upstream along the flow, i.e., 

V]x=_| = ex, ( 2 . 3 )  

and the condition for the absence of seepage through the plate. 

In the induction-free approximation, the magnetic field in the liquid appearing in (2.2) 
does not depend on the velocity field and is determined by the surface currents (i.i) assigned 
in the olane of the plate. 

Perturbations of the velocity field affect the electric field due to the development of 
space charges in the perturbed flow region, and this effect must not be neglected. The dimen- 
sionless potential of the electric field is described by the nonhomogeneous equation 

A~(x, y, z) = H.cudV.  ( 2 . 4 )  

The quantities Ho = 2~Jo/c, uoHo/c, and auoHo/c are used as the scales in rendering dimension- 
less H, E, and 9, respectively. 

3. Under the assumption that N << i, we seek the solution of Eqs. (2.1) and (2.4) in the 

following form: 

V(x, y, z ) =  e~ + NVdx, y, z ) +  N~Vdx, y, z ) +  ...~ 
p@, y, z) = Np~(~ y, z) -t- N~2(x,  Y~ z) A- . . .~  ( 3 . 1 )  

~(x, y, z) = %(x, y, z) + N%(x~ y, z) + N 2 ~ ( ~  y, z) + ..., 

while, in the exact formulation, we shall seek the solution only for the first-order velocity 
field. On the basis of Eqs. (2,1) and condition (2.3), the problem is reduced to the following 

one: 

OVt/Ox = - - V P t  ~ fo, d i v  V~ = 0, fo  = [ E o •  ~ H~H-  H2ex, ( 3 . 2 )  

E o = - - V % ( X ,  y, z); 
V l [x=_~  = 0. ( 3 . 3 )  

The functionq) o(X, y, z) appearing in fo is defined as the solution of the problem 

d~ 0 A% (x, y, z) = 0, 7 f  z=~0 = -+ • (x), % [~ = 0 

for the boundary condition derived in [4] from 
determined by the assigned surface currents (i. 

(3.4) 

the optimization condition.* The field H is 
I), which can be represented in the form of 

volume currents by means of the delta function ~(z), 

I0 J(x, y, z) J~ ~(z) ex + i ~ T e ~  ~(z) ( 3 . 5 )  
a 

a n d  t h e  p r o b l e m  o f  d e t e r m i n i n g  t h e  d i m e n s i o n l e s s  f i e l d  H t h r o u g h o u t  t h e  e n t i r e  s p a c e  i s  r e d u c e d  
t o  t h e  f o l l o w i n g  o n e :  

*The constant i + i/y appears instead of ~ in [4]. 
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r o t H  = 2j(x, y, z): d i v H  = 0, HI~ = 0. ( 3 . 6 )  

The solutions of problems (3.4) and (3.6) are given in [4] in Fourier representation with 
respect to the x variable. In order to solve Eqs. (3.2), the force field fo and, consequently, 
also the fields Eo and H must be in the Fourier representation with respect to the x and z 
variables. By representing the dimensionless current density (3.5) in the form of a two- 
dimensional expansion, 

(x. y, z) = e ih0~ ~oo J (k:r k~) e i(h:r dk:~dk~. 
- - o o  

1/2 
i (k~, ~ )  = -5~ e ~ "  ~ eu ~ (k~), ~ ( ~ )  = ~ io (x) e - ~  dz,  

we obtain the solution of problem (3.6) in a similar form with the Fourier transform: 

k~ (k~ex + koe~) -- (k~ + k~) e~ ~ (kx). 
H(k~, k~) = ~k ~ 2 2 k~ 

k x + k O - { -  z 

It should be noted that, due to the realness of the io(x) function from (i~ its Fourier 
transform figuring in (3.7) has the following property: 

i(--kx) -- i*(kx). ( 3 . 7 )  

The solution of problem (3.4) is given by 

oo 

r (x, y, z) = e ~o~ [ [ (kx, k~) e ~(~xz+~) dkxdkz, 
(3.8) 

After performing integration with respect to the variable kz, integral (3.8) and the similar 
integral for B can readily be reduced to the corresponding expressions from [4], and the valid- 
ity of the solutions obtained can thus be verified. 

In reducing the force field fo to the required form, it should be noted that, if the two 
real functions BI and B2 have Fourier representations, 

B1. 2 (x, y, z) = Real ei'~, y ~ ~ BI.2 (kx, k~) ei(~xx+~z~)dkxdkz, 

then the product C(x, y, z) = B~(x, y, z)B2(x, y, z) can be reduced to the following form: 

C (x, y, z) = Real C (*) (kl; k2) e i(~x~+h2~) dkldk2 

i 
C(1) (kl(k2) = T 

i C (2) (kl, k2) = -~- 

+ e~ko v ;~_~ C(2)(kl, k2)e~(hx+k2~)dkldk2},: 

k2 + q2 ,~-* ~ t S 1 (  kl+qi2 ' ' 2 -')l~2(q12]fl'q27k2) dqldq2' 

oo 
~ ~ Ul (]~1-~q12 ' ' k'2-~q2)U2( k l - q l - 7  ~2--.~ -~ , ~ ) dqldqv 
--oo 

(3.9) 

It is evident from (3.9) that the Fourier components of the vector fo (3.2) are expressed in 
terms of double integrals with respect to q~ and q2. Integration with respect to the variable 
q2 can be performed in explicit form (by using residues), and, with an allowance for (3.7), 
the final result is reduced to the following: 
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oo . /kl  -~ qty .  [k l -- ql~ 

t ( ~ ' ~ ) ( k ~ , k 2 ) = ~  d + _ _  ' ' . - 7 ~  ~ - -  
- o o  I V [k 2 -~- v 2 (k,, q,)] 

2 ] + k 2 + - ~ ~ , -  ql) + ( ~ .  + q.~.) (v + f) ~. + ~ ~ [2. (~, _ ~ )  + + % 

+ 
-{- k~ [k 1 (~q - -  ~(1,~)• (V -{- V) -~- q~(6h - -  T(1 2)~) + ( V -  1~)] e~} dq,. 

Here and subsequently, 

(3.11) 

+ 

v - - ' . V 4 k 3 + ( k l + q , ) ~ ,  v = V 4 k ~ + ( k ~  q~)~, ~ V4k3 k ~ 
f ' 4 _ _  

V 4k~ + ~ + q[ + vv 4k~ + ~ - q~ 4~o ~ + 4 - k[ 
v2 2 ,~ 8q= ..... sko~ , ~ k =  sko~ �9 

( ~  (~) ( i )  (~) (~) 
The constants ~, $, and ~, have the values a " = --i, B = i, ~ = 0, ~ = i, B = 
O, and y(2) = i. It is evident from the above expressions that the force field fo consists 
of two parts. One of them is volumetric in character and periodic with respect to y with the 
period ~/2. The other one is independent of y and does not contain a y-component, i.e., it 

represents a two-dimensional (x, z) force field. 

4. We now turn to problem (3.2), (3.3). As a consequence of (3.10), its solution is 
also composed of similar two parts, 

2ikoY ~ . V,  (x, y, z) = Vc (x, z) + e v (x, z), p (x, y, z) = Pr (x, z) + e~a~ (x, z); ( 4 . 1 )  

OVe OVcx OVez 
0 - ~  ---- --VPc + fc (x, z), -~x + ~ = 0; (4.2) 

oY~ a~, 
~3o~ = _ v ~ -  2~$e~ + ~'(~, ~), ~ + T ~  + 2~kog~ = O; (4 .-3) 

vol .=- |  = ~'1~=-= = o; pol~=_.. = ~1~=_| =,o.  
, o o  oo 

H e r e  ~c(2, z } = S  S~(l)(ki, k2)e dkldk2, ~ {x , ' z )  = 

The particular solutions (marked by asterisks) of the nonhomogeneous equations (4.2) 

are sought in the form 

(4.4) 

and (4.3) 

oo 

(4.5) 

(the calculations are performed in a similar manner for the other unknowns). 

(4.3), we obtain 

v :  (k,, k2) = (k -- 2ko%) [(k -- 2ko% ) ~(1)(kl, k s ) ] -  (ki~ + k~) ~(, (kl, k~) 
~k~ (k~ + k~) 

k2f(2) 
( k l ,  k2) = (k l ,  k2) - -  [ k . f  (2") (k i ,  k2) ] k (k = kle~ + 2ko% + k,e,) .  

iklkZ 

From (4.2) and 

(4.6) 

It follows from (4.5), (4.6), and (3.11) that the sought solutions are represented by three- 
dimensional integrals in kl, k2, ql space. By using residues, we perform integration with 
respect to k2 in explicit form and reduce all the sought quantities to two-dimensional in- 
tegrals. In the general case of an arbitrary real function io(x), it is difficult to use 
the integrals obtained for analyzing the flow in question, and they are therefore not repro- 
duced here. There is an important particular case, the case of even functions io(x), for 
which the Fourier transform i(k ) is a real even function, due to which the product i[(kl -- 
q~)/2]i[(kl + qI~/2], and also the functions F(k~, ql), and A(kl, q~) appearing in the inte- 
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grals under consideration become even functions with respect to both variables k~ and qz, 
which allows us to reduce the sought expressions to the following real integrals 

ii '~ " 
-- v~e sin klx 

Vc*x = --  f (ki, q~) ~ ~ ki dkidql, 
0 0 '~2 - -  ]~1 

S S e--klZ __ e--~2 z V=* = - -  . F (k~, qa) : -- k] cos k~x dk~dq~, 
0 0 ~2 

1%' (kl, qx) --  t 2 ,1 i 2 q~a) ]  ~) ] ~ - "  +_~ ~i[(~- ~)(4~ + qD-(~ + (~ + + ~,q, (~-~ + t( ~)}; 

VV 

(4.7) 

~ ,  " s i l l  k l x  

0 0 

+ k,,~ (,, - -  ~)  ~ + ( ~ (,~ - -  1) - -  k~ q ~ )  (V + V) + 

+ ( - -  v~ (• - -  l )  + q~6~) k l~q lV  ~ ekldql, 

o o ' o o  

- A (k~, ql) cos k~x 4k (6h - • + t) (~ + v) + 

(4.8) 

+ [ V - - V  2 ]  e--viz ' -- -- ' 

- " ( - ~ , k o  + (~ - ~) (q~ - k ~ ) )  (~; + ~) + (~ - t) (,,~ - qD k, q, J : ,  ) 
+ t -  

V, = A (kl, r cos k lx  (e-V~ z _ e -* ,  ~) (• _ 1 - -  5h) (V + V) - -  .~ (• v - -  v dkldql ' 
0 0 

A (k l ,  q 0  = + _  ~ 2" 
VV ~i - -  v~ 

The above solutions indicate that the transverse field components V* and V* are even 
functions of x, while they all tend to zero for x § +_~. The longitudina~ components V* and 
V* are odd with respect to x and are nonvanishing at infinity upstream and downstream aC[ong 
t~e flow. Actually, for x § ~, the inner integrals (with respect to k~) in expressions (4.7) 
and (4.8) tend to quantities equal to the products between ~/2 and the values of the corre- 
sponding integrands for k~ = 0 and x = i, so that the sought limits assume the values 

~: Jx=• = +_ L (z), 

0 

= dq 

-2V4+e~ 
e &l, 

(4.9) 

(evidently, Vo(z) does not contain • and coincides with Vo(z) l~=l)~ Thus, the obtained partic- 
ular solution of the nonhomogeneous equations (4.2) and (4.3) does not satisfy condition (4.4) 
for the absence of perturbations at infinity upstream along the flow and must be supplemented 
by suitable solutions of homogeneous equations. We finally have 

Y ~ = Y : ( x , z ) +  V o(z) ex, V = V * ( x , z ) +  f o(z) e~. ( 4 . 1 0 )  

These relationships, together with (4.7)-(4.9), constitute the sought solution (4.1) of 
the first approximation for the velocity fields, which holds for an arbitrary even function 
io (x) . 

5. The character of the flow in question is determined by" the type of the internal 
source, i.e., the function io(x) and the parameters ko and x. The simplest secondary flow 
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occurs in the wake behind the plate at a sufficiently large distance from it. The vectors V c 
and V have in this case only longitudinal components, so that the wake flow constitutes a non- 

diffusing (due to the absence of viscosity) stream. 

On the basis of (4.1), (4.9), and (4.10), the velocity distribution in the symmetry plane 
of the stream is given by 

V,= o = 2N[Vo(O) + Vo(O) cos 2koyle~, (5. i )  

i.e., it is determined by Vo(z)[z= o = Vo(0), and Vo(z)]z=o = Vo(0), for which, using relation- 
ships (4.9) (for z = 0) and the Parseval equations 

I r (q)I ~ dq = -~i i~ (x) dx, Ir (q) I ~ q2dq = ~ d \-rig/ dx 
0 0 0 0 

we obtain the expressions 

[i + - ' 
Vo (o) = 2 (~ - o ,o,~o)~ , 

V o ( O )  = - -  V o ( O ) I . _ l =  O. . 

The dependence of Vo(0) on ko shown in Fig. 1 is given for ~ = 1.0, 1.2, 1.5, and 2.0 (curves 
1-4, respectively), while curve 1 also describes --Vo(0). Generally speaking, curves 1 and 4 
contain complete information on the quantity in question because of the linear dependence of 
Vo(0) on • i. From this point of view, curves 2 and 3 are "redundant," and are given here 
only for the sake of visual clarity. It is evident from the diagrams that, for ko< k~(~) 
the mean velocity in the symmetry plane of the stream is negative, while k~[~) is approximate- 
ly equal to 0.7~ for • = 2, increasing to 1.77 as • decreases to 1.2. 

For small values ko ~ 7, the investigated velocity field has another characteristic fea- 
ture: The values of Vo(0), and Vo(0) in (5.1) have the same order of magnitude, while, for 
large values of ko (and finite values of ~ -- !), the ratio of the scale of the "variable" 
(i.e., y-dependent) velocity component in the stream to the scale of the mean velocity is equal 

to 

~~176 0 f ~  ]. (5.2) (o) - 

Thus, for large values of ko, the stream produced by electromagnetic forces is two-dimensional, 

while, for ko ~ ~, it consists of "tongues" periodic with respect to y. 

The velocity profile in the stream is similar to the velocity profile at the middle of 
the plate, regardless of the characteristics of the electromagnetic field source, since, ac- 

cording to (4.9) and (4.10), 

V~I~== = 2V~lx=o = 2Vo(z), "-P~l~== = 2V'-'~l~=o = 2Vo(z). 

One can visualize the profile shape by referring to Fig. 2, which shows the Vo(z) functions 
calculated for (1.2) for three characteristic values of ko (it should be noted that the prod- 
uct koz is laid off on the vertical axis in this case). Since the dependence of Vo(z) on the 
parameter ~ -- 1 is linear, the curves are given only for two values of ~ = 1.5 (solid curves) 
and ~ = 1.0 (dashed curves), while these values also characterize the function Vo(z), since 
Vo(z) = --Vo(z) l~=1. It is evident that the shape of the Vo(z) profile for small ko values is 
different from the corresponding shape for large ko values. While the profile is monotonic 

for ko >> i, 
Vo (z) = Vo (o) e - ~ .  ~, 

it becomes nonmonotonic with a reduction in ko. It is evident from Fig. 2 that the velocity 
in the symmetry plane of the stream is negative for ko = ~, and ~ = 1.5, it has a maximum 
positive value at a distance of the order of i/5ko = %/I0~ from the symmetry plane, and it 
drops to zero at a distance of ~%/4, as in the case of large ko values. 

If we have an idea of the character of the flow near the plate that is described by the 
velocity field Vc, we can compose the velocity profiles at the middle of the plate and the 
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velocity distribution Vcxlz= o = u along the plane of the plate. The former are shown in Fig. 
2, and the latter in Fig. 3 for • = 2 and three different values of ko. It is evident that, 
for all ko > ~, the longitudinal velocity increase along the plate surface has the same char- 
acter as the process whereby the velocity reaches the 2Vo(0) value; in particular, the veloc- 
ity u practically coincides with its limiting Value even at the i/i0 distance from the trail- 
ing edge. 

The three-dimensional addition to the velocity field for ko >> 1 is characterized by the 
estimate (5.2); it is difficult to obtain such estimates for the transverse components, since 

and Vz are expressed by complex two-dimensional integrals (4.8). However, calculations 
s~ow that; for all ko >> 7, the scales of Vy and V are considerably smaller than the scale 
of Vx and that at least the inequalities z 

I v'-'yl < O/ko)l'V~l, 1V~l < O/ko)l V~l (5.3) 
hold for the scales of the corresponding quantities. 

6. In conclusion, we turn to the equations describing the second term of expansion (3.1): 

O V / O x  = - - ( V I ' V ) V 1  - -  VP2 + fl ,  div  V= = O, ( 6 . 1 )  

where fl = [El x H] + (VI*H)H -- H2VI is determined by the distribution of H and the solutions 
VI and E~ of the first approximation. As in the case of V~, the solution V2 is composed of 
the two,dimensional vector field V2c, which is independent of the coordinate y, and an addi- 
tion periodic with respect to y, which vanishes after averaging with respect to this coordi- 
nate. 

The excessive cumbersomeness of the expressions for VI and fl makes it impossible to ob- 
tain the exact solution of these equations, and this makes it necessary to use numerical meth- 
ods. However, in using numerical methods, it is naturally desirable to eliminate the con- 
straint N << 1 and investigate the problem stated in a more general way. However, the three- 
dimensionality of the flow in question, characterized by large gradients, presents here an 
almost insuperable obstacle in the general case, and the question arises whether two-dimension- 
al idealization can be used for obtaining quantities averaged with respect to y. 
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A partial answer to this question is obtained on the basis of Eq. (6.1) whence it follows 
that, for ko >> i, the effect of the Ve 2ik~ component of the first-apprQximation solution on ' 
sought solution V2 c is slight, so that two-dimensional idealization describes the required so- 
lution at least with an accuracy to O(N2). Actually, with an allowance for (4.1), the compo- 
nent of (VIoV)V i from the right-hand side of (6.1) that is independent of y has the form 

[(V,.V)V~k (V~x ~ ovr / ov~ V ~ = + 

Hence, with an allowance for estimates (5.2) and (5.3), it is evident that, although theV~ ik~ 
component of the first-approximation solution produces in principle Reynolds stresses, which 
affect the velocity field V2c, these stresses are nevertheless small for ko >> 1 in compari- 
son with the term (Vc.V)V c (their ratio amounts to ~i/ko2), and they can be neglected. 
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NONSTATIONARY VORTEX FLOWS OF AN IDEAL INCOMPRESSIBLE FLUID 

A. A. Abrashkin and E. I. Yakubovich UDC 532.5 

As is known, analytic methods of sufficiently general nature were developed only for po- 
tential motions in the two-dimensional hydrodynamics of an ideal incompressible fluid while 
vortex flows were investigated for quite particular cases [i, 2]. Examples of unbounded plane 
flows with concentration vorticity that allow analytic description of unbounded plane flows 
with concentration vorticity that allow analytic description are certain systems of point vor- 
tices, vortex pairs, Karman street [I], a three vortex system [3], as well as a Kirchhoff vor- 
tex which is an elliptical domain of homogeneous vorticity ~ rotating at the angular velocity 

= mAB/(A + B) 2 (A, B are the ellipse semiaxes). Goerstner [i] obtained a unique exact solu- 
tion for vortex flows with a free boundary which describes trochoidal waves on the surface of 

an infinitely deep fluid [i]. 

Such a type of plane nonstationary biharmonically time-dependent vortex motions of a 
fluid is found in this paper as includes elliptical vortices and Goerstner waves as particular 
cases and, exactly as potential flows, allows the method of conformal transformation for the 
solution of specific problems. It is shown that in a certain sense the class of motions found 
is exceptional, viz., out of all possible solutions in Lagrange variables that contain a fi- 
nite set of time frequencies, only the two-frequency solution obtained in this paper satisfies 
the hydrodynamics equations. However, this class describes only such vortex flows for which 
a reference system can be indicated where the trajectories of the fluid particles remain lo- 
calized, which is not satisfied, say, for the shear layer. 

The theory developed for these flows is used to investigate the self-consistent inter- 
action of a nonstationary vortex domain with an external potential flow. 
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pp. 57-64, March-April, 1985. Original article submitted March 12, 1984. 
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